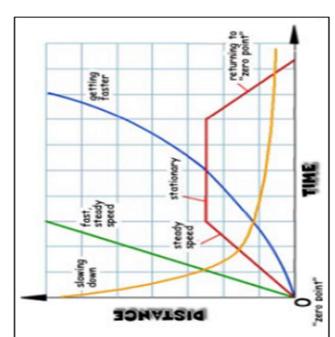

(F = m x a)


Force = mass ÷ acceleration

KNOWLEDGE ORGANISER

		Thinking distance	The distance travelled as the driver reacts
	_		
		Braking distance	The distance travelled as the driver applies the brakes
	3uiye.	Stopping distance	Thinking distance + Braking distance
	18	Braking distance increases with	Higher speed, higher mass, poor weather, poor vehicle conditions
1		Thinking distance increases with	Higher speed, drink, drugs, distractions

1		Newton's 1st Law	If an object experiences zero resultant force it does not accelerate
ı		Newton's 2 nd law	The resultant force equals the mass × acceleration
		The greater the resultant force	The greater the acceleration
	sweJ :	The greater the mass	The smaller the acceleration for a given force
	wton's	Forces	Occur in pairs of the same type
	ĐΝ	Newton's 3 rd law	If object A exerts a force on object B, then object B exerts a force of equal magnitude and opposite direction on object A
		When brakes are applied	Friction does work
		When brakes are applied	The kinetic energy store of the wheels decreases and the thermal energy store of the brakes increases.

