Higher - Number

Learn all the foundation key facts and remember these top tips!

Recurring Decimals

To change a recurring decimal to a fraction, follow these steps. Your aim is to ensure you have two decimals which have the same numbers after the decimal point.
E.g. change $0.2 \dot{3} \dot{5}$ to a fraction.

Let $x=0.2 \dot{3} \dot{5}$
$10 x=2.3 \dot{5}$
$1000 x=235.35$

Subtracting these two gives
$990 x=233$

Solving gives
$x=\frac{233}{990}$

Surds

$$
\begin{aligned}
& \sqrt{a} \times \sqrt{b}=\sqrt{a b} \\
& \frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}} \\
& (\sqrt{a})^{2}=a
\end{aligned}
$$

To simplify a surd, write it as the product of two factors, one of which must be a square number.
E.g. $\sqrt{50}=\sqrt{(25 \times 2)}$
$=5 \sqrt{2}$

To rationalise the denominator of a fraction which has just one term on the bottom, you can multiply both the numerator and denominator by this number.
E.g. $\frac{5}{\sqrt{2}}=\frac{5}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}$
$=\frac{5 \sqrt{2}}{2}$

If the denominator has two terms, change the sign between them and multiply both the numerator and denominator by this.

$$
\begin{aligned}
& \text { E.g. } \frac{7}{2+\sqrt{3}}=\frac{7}{2+\sqrt{3}} \times \frac{2-\sqrt{3}}{2-\sqrt{3}} \\
& \frac{14-7 \sqrt{3}}{4-3}=14-7 \sqrt{3}
\end{aligned}
$$

