Higher - Algebra

Graphs

Make sure that you can recognise these graphs.

The equation of a circle with centre $(0,0)$ and radius r is given by $x^{2}+y^{2}=r^{2}$ Don't forget that the tangent to a circle will always be perpendicular to its radius.

Functions

A composite function is created by finding the function of a function. For $f g(x)$ we apply the function $g(x)$ first, then apply $f(x)$ to the answer.
e.g. $f(x)=3 x$ and $g(x)=2 x-5$
$f g(x)=3(2 x-5)=6 x-15$
An inverse function is the reverse of a function. Swap the x and y and rearrange to make y the subject.

Solving Equations

To solve a quadratic equation without a calculator you can factorise and then solve.
E.g. Solve $3 x^{2}-x-2=0$
$(3 x+2)(x-1)=0$
$3 x+2=0$ or $x-1=0$
$x=-\frac{2}{3}$ or $x=1$
Note: on a graph, these values show where it crosses the x-axis.

Gradient

To find the gradient of a curve at a point, we draw the tangent at that point and find the gradient of the tangent.
Remember, gradient $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Quadratic Sequences

A quadratic sequence is one which has a common second difference. We halve the second difference to find the coefficient of x^{2}.

Geometric Sequences

A geometric sequence is one in which each term is found by multiplying the term before it by a common ratio, r.

Quadratic Simultaneous Equations

Make x or y the subject of the linear equation and substitute it into the quadratic equation. Don't forget to calculate the value of both letters!

Higher - Algebra

Learn all the foundation key facts and remember these top tips!

Iteration

This is a way of finding approximate solutions to equations without using trial and improvement. Make sure you use your calculator to help you!
An iteration formula might look like this:
$x_{n+1}=1+\frac{11}{x_{n-3}}$
You will be given a starting point, e.g. $x_{1}=-2$
We can use this starting point to find an estimate for the solution.
$x_{2}=1+\frac{11}{-2-3}$
$x_{2}=-1.2$
$x_{3}=1+\frac{11}{-1.2-3}$
$x_{3}=-1.61 \ldots$
$x_{4}=1+\frac{11}{-1.61 \ldots-3}$
$x_{4}=-1.38 \ldots$
Keep going until you have the required level of accuracy.

To 2 decimal places $x=1.46$

Straight Line Graphs

Two lines are perpendicular if their gradients have a product of -1 .
E.g. 4 and $-\frac{1}{4}$

$$
-\frac{3}{2} \text { and } \frac{2}{3}
$$

Expanding Three Brackets

To expand three brackets, start by expanding two and then multiplying each term by both parts of the third bracket.

$$
\text { E.g. } \begin{aligned}
& (x+1)(x+2)(x+3)=\left(x^{2}+3 x+2\right)(x+3) \\
& =x^{3}+3 x^{2}+3 x^{2}+9 x+2 x+6 \\
& =x^{3}+6 x^{2}+11 x+6
\end{aligned}
$$

Algebraic Fractions

To simplify an algebraic fraction, factorise both the numerator and the denominator and 'cancel' the common factors.
E.g. $\frac{3 x+6}{2 x^{2}+3 x-2}=\frac{3(x+2)}{(2 x-1)(x+2)}=\frac{3}{2 x-1}$

Quadratic Equations

The solutions of $a x^{2}+b x+c=0$ are given by
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Completing the Square

We can complete the square on the expression $x^{2}+b x+c$ by first halving the coefficient of x, then squaring it and subtracting.
E.g. $x^{2}+6 x-2=(x+3)^{2}-2-9$

$$
=(x+3)^{2}-11
$$

The turning point of this graph is
$(-3,-11)$.
We can also solve $x^{2}+6 x-2=0$ using its completed square form.
$(x+3)^{2}-11=0$
$(x+3)^{2}=11$
$x+3= \pm \sqrt{ } 11$
$x=\sqrt{ } 11-3$ or $x=-\sqrt{ } 11-3$

Proof

An even number is given by $2 n$
An odd number is given by $2 n+1$
Consecutive means one after the other
Sum means add
Product means multiply

