Foundation - Algebra

Sequences

The nth term is the algebraic rule we use to describe a sequence.
To find the nth term, remember DnO.

Difference $\times \mathbf{n}+$ zero term (this is the term that would come before the first term)
e.g. $4,9,14,19 \ldots$ is given by $5 n-1$

Solving Equations

To solve equations, use the inverses of the operations that have been applied to the unknown,
e.g. $4 x-7=11$

First add 7 to both sides:
$4 x=18$
Then divide by 4:
$x=\frac{18}{4} \quad x=4 \frac{1}{2}$
If you can't work out the answer, leave it as a fraction in its simplest form.

Inequalities

We deal with inequalities in the same way as equations,
e.g. Solve $5 x+2<12$

Subtract 2: $5 x<10$
Divide by 5: $x<2$
On a number line, it looks like this:
$x \geq 5$ looks like this.
The shaded dot means more than or equal to:

Key Terms

Simplify - Write more simply, usually by collecting like terms, e.g. $4 x+2 x-x=5 x$

Solve - Calculate the value of the letter.
Expand - Multiply out brackets.
Factorise - Put back into brackets.

Simultaneous Equations

To solve simultaneous equations:
multiply the equations if necessary;
$2 x+7 y=24(\times 3)$
$3 x+5 y=25(\times 2)$
$6 x+21 y=72$
$6 x+15 y=50$
cancel one variable by adding or subtracting the equations, and solve the resulting equation;

$$
\begin{aligned}
6 x+21 y & =72 \\
6 x+15 y & =50 \\
\hline 6 y & =12 \\
y & =2
\end{aligned}
$$

and substitute this value into one of the other equations and solve for the remaining variable.

$$
\begin{aligned}
2 x+14 & =24 \\
x & =5
\end{aligned}
$$

Foundation - Algebra

Straight Line Graphs

The general equation for a straight line graph is $y=m x+c$
m is the gradient (steepness) of the line and c is the y-intercept (where it crosses the y-axis).

Two lines are parallel if they have the same gradient.

Changing the Subject

Similar to solving equations, reverse the operations to get the required letter on its own.
E.g. The equation of a straight line is $y=m x+c$. Rearrange to make x the subject.

Start by subtracting $c: y-c=m x$
Divide by $m:(y-c) \div m=x$
So $x=(y-c) \div m$

Factorising Brackets

To factorise into one bracket, find the highest common factor for each term,
e.g. $4 x+10=2(2 x+5)$

When there is no common factor and the equation is of the form $x^{2}+b x+c$, you need to find two numbers that multiply to make c and add to make b, e.g. $x^{2}+7 x+12=(x+3)(x+4)$
$x^{2}+x-20=(x+5)(x-4)$

Expanding Brackets

To expand one bracket, make sure the term on the outside multiplies everything on the inside,
e.g. $4(2 x-3)=8 x-12$

To expand two brackets, follow the F.O.I.L. method (First, Outer, Inner, Last), e.g.

Index Laws

When multiplying, add the powers:
$x^{2} \times x^{4}=x^{6}$
When dividing, subtract the powers: $\frac{b^{5}}{b^{3}}=b^{2}$
When you have brackets, multiply the powers: $\left(y^{3}\right)^{5}=y^{15}$

Anything to the power of zero is $1: a^{0}=1$

