2.4 Computational Logic

Simple Logic Circuit Diagrams

NOT Truth Table:

Input	Output
0	1
1	0

AND Truth Table:

Input A	Input B	Output
0	0	0
0	1	0
1	0	0
1	1	1

Boolean Algebra: P = A OR B

AVB

OR Truth Table:

Input A	Input B	Output
0	0	0
0	1	1
1	0	1
1	1	1

Complex Logic Circuit Diagrams

OUTPUT

Α	В	R = A AND B	P = NOT R	
0	0	0	1	E
0	1	0	1	
1	0	0	1	
1	1	1	0	

Break the logic diagram down into stages (step by step)

2.4 Computational Logic

Drawing Logic Circuit Diagrams

Always start with the brackets first

P = NOT (A AND B)

P = ((NOT B)AND C) OR A

----BRACKETS inside BRACKETS FIRST!----

