
2.3 Producing Robust Programs
Defensive DesignKeywords & Definitions

Authentication:  The process of determining the
identity of a user
 
Input sanitisation: removing any unwanted
characters before passing data through the
program
 
Input validation: checking if data meets certain
criteria before passing it into the program
 
Testing: take measures to check the quality,
performance, or reliability
 
Maintain: uphold the program to ensure it runs
efficiently
 

Computer programs should be designed to
ensure that they can cope with unexpected or
erroneous input from users
 
Programmers try to protect their programs
through defensive design, they will try to:

Anticipate how users might misuse their
program, then attempt to prevent it from
happening
Ensure their code is well-maintained
Reduce the number of errors in the code
through testing

Validation Checks

Validation:
checking if
data meets
certain
criteria
before
passing it
into the
program
 

Input Sanitisation
Cleaning up the data that is inputted
Data sanitisation trims or strips strings, removing unwanted characters from strings
For example, Dave  not dav%e, the % would be removed

This ensures that the input is correct and contains only the permitted characters,
letters and symbols
 

Authentication
Confirming the identity of a user, usually through the use of passwords. 
Common ways to increase security:

force users to use strong passwords and change them regularly
limit the number of failed attempts before locking



World of work links
Programmer, IT Technician, Software Engineer, Teacher, Systems
Architecture, Data Engineer, Software Developer

2.2 Programming Techniques
Maintainability

Your program should be easy to maintain - programmers should make sure that it is well-
maintained

Comments (#): useful for explaining

what the key features of a program

do

Variables/sub programs: should be

name so that they refer to what they
actually are

Indentation: used to separate
different statements in a program -

clearly see the flow

Testing
Testing is just as important as the programming itself!

Three main types of errors that can occur:
 

Iterative testing is testing
the code as you create it -

line by line OR a section at a
time

Test Data:
Normal/Valid data – data that
is correct
In range data – max and min
values at the limit of what
could entered
Invalid – data that the program
should not accept (wrong data
type for example)
Null Value – when no data is
entered or left blank to test
what happens

Final or Terminal testing is
carried out at the end of the

program when it has been
written.

Testing is often completed in a test plan which sets out:
The test number
The data entered
The type of test data
The expected outcome
The result of the test
Action required as a result of the test

 


