2.1 Algorithms

Keywords & Definitions

Algorithm: A step-by-step set of rules or instructions

Pseudocode: A set of instructions in the style of a programming language but using plain English

Decomposition: Breaking a complex problem down into smaller problems

Abstraction: Picking out the important bits of information from the problem

Search algorithm: A set of instructions that you can follow to find an item in a list

Sorting algorithm: A set of instructions that you can follow to order a list of items

Computational Thinking

Decomposition:

Breaking a complex problem down into smaller problems

Abstraction:

Picking out the important bits of information from the problem

Algorithmic Thinking

A logical way of getting from the problem to the solution.

Creating a flowchart

Terminator

Start or stop - ALL: flowcharts should have one of these at the beginning

SUBJECT + VERB + ADJECTIVI

Process

Action/step that takes place. For example if the computer is doing a calculation

Input/ Output

The user has to input data (answer a question) or when something is printed on the screen

When the program has to make a decision, this could be an IF..ELSE decision

2.1 Algorithms

Searching Algorithms

Binary Search

Use binary search to find the number 6:

1 2 3 4 5 6 7 8

- 1. Look at the number 4 first (this is the middle number)
- 2. 8 is higher than 4 so get rid of the first half of the list
- 3. look at number 6

Linear Search

Use linear search to find the number 6:

1 2 3 4 5 6 7 8

- 1. Look at 1
- 2. Look at 2
- 3. Look at 3
- 4. Look at 4
- 5. Look at 5
- 6. Look at 6

Stop

2.1 Algorithms

Bubble Sort

Sorting Algorithms

	-
Description	Example
Step 1: Starting positions of all the numbers	3 2 4 1
Step 2: Look at the first two numbers	3 2 4 1
Step 3: If num1 is greater than num2 swap them over	2 3 4 1
Step 4: Move onto the next pair of numbers and repeat step 3	2 3 4 1
Step 5: Keep repeating steps 3 and 4 until you get to the end of the array	2 3 4 1
	2 3 1 4

Description				Example	•
	2	3	1	4]
	2	1	3	4	Next pass, change made
	2	1	3	4	
Step 6: When you get to the end of the array, if there	1	2	3	4	٦
have been changes repeat steps 3 to 5. Keep repeating	1	2	3	4	Next pass, change made
until you get to the end of the array with no changes	1	2	3	4	
	1	2	3	4	์
	1	2	3	4	Next pass, no changes made
	1	2	3	4	
Step 7: If you get to the end of the array with no changes		1		2	3 4
stop the algorithm					

Insertion Sort

Leave the first item at the start: 11 5 is now inserted into the sorted list: 15 3 11 4 is now inserted into the sorted list: 11 15 is now inserted into the sorted list: 11 3 is now inserted into the sorted list: 8 is now inserted into the sorted list: 11 is now inserted into the sorted list: 9 11 15 2 is now inserted into the sorted list: 9 11 15

Easiest but would take the longest if the list of numbers was a long one

Merge Sort

More complex but quicker to sort

World of work links

